If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2+140H+30
We move all terms to the left:
-(-16H^2+140H+30)=0
We get rid of parentheses
16H^2-140H-30=0
a = 16; b = -140; c = -30;
Δ = b2-4ac
Δ = -1402-4·16·(-30)
Δ = 21520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21520}=\sqrt{16*1345}=\sqrt{16}*\sqrt{1345}=4\sqrt{1345}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-4\sqrt{1345}}{2*16}=\frac{140-4\sqrt{1345}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+4\sqrt{1345}}{2*16}=\frac{140+4\sqrt{1345}}{32} $
| 12x+16=2x-48 | | 5x+3=4x-3=360 | | 5x+3=4x-3=260 | | o-1=1 | | -7.5-4z-4.7-2z=-5z-8.7 | | 0.25(q-8)=0.1(q+7) | | 20+10+3x=6x | | 2.8x-10.26=4.3 | | -3x-2x+1=11 | | (x)/(5)=3 | | 18x-1=12x-25 | | -3/7w=6 | | 3p^2-6p=9 | | 0=t^2+19t+60 | | 10x+42=3x | | 8x-2x=126 | | 5=4n^2-n-5 | | 2x-1=213 | | 4(w-4)-5=-2(-9w+9)-8w | | x^2+6x+270=0 | | x^2-6x+270=0 | | 100-36=w | | -9(z+2)+4(4z-6)=6(z-6)+14 | | -2(6x-2)+x=3+2(2x-1) | | w-36=64 | | 6(n-2)-(4-7n)=12n | | 40+45n=12+180 | | 7w-7+2(2w+5)=-3(w+1) | | 40+45n=12+ | | 6(w+1)=-2(3w-5)+4w | | -7(n-5)=-8n | | 9x+12+16x-7=180 |